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Climate change has increased the frequency and intensity of
natural disasters. Does this translate into increased economic
damages? To date, empirical assessments of damage trends have
been inconclusive. Our study demonstrates a temporal increase
in extreme damages, after controlling for a number of factors.
We analyze event-level data using quantile regressions to cap-
ture patterns in the damage distribution (not just its mean) and
find strong evidence of progressive rightward skewing and tail-
fattening over time. While the effect of time on averages is hard
to detect, effects on extreme damages are large, statistically sig-
nificant, and growing with increasing percentiles. Our results are
consistent with an upwardly curved, convex damage function,
which is commonly assumed in climate-economics models. They
are also robust to different specifications of control variables and
time range considered and indicate that the risk of extreme dam-
ages has increased more in temperate areas than in tropical ones.
We use simulations to show that underreporting bias in the data
does not weaken our inferences; in fact, it may make them overly
conservative.
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C limate change has been convincingly linked to an increase
in the frequency and intensity of natural disasters in many

regions (1–4). However, whether and how this is reflected
in increasing economic impacts remains unclear. Long-term
upward trends in damages, when detected, have been interpreted
as indicative of increasing future risks and of a need for preven-
tion and adaptation efforts (5–7). They have also been seen as
indirect evidence for climate change (8, 9). But there are still sub-
stantial disagreements on whether such trends exist. Some stud-
ies report statistically significant long-term increases in damages,
but only for selected hazards (10, 11). Other studies report an
increasing global trend (12, 13), though researchers have ques-
tioned the robustness of this finding with respect to methodolog-
ical choices (14). These inconsistencies have led many to reject
the notion that damages caused by natural disasters are growing
over time (10, 15–17). Part of the debate to date has focused on
how to properly normalize damage values to eliminate confound-
ing factors (e.g., inflation, population, and wealth per capita) and
ensure comparability of measurements across time and space.
Recent Actual-to-Potential-Loss normalization approaches (17)
did overcome problems associated with earlier techniques, which
typically accounted for rates of change in confounding factors,
but not for their absolute sizes. Nevertheless, these approaches
did not reveal statistically significant trends in damages (17).

Inconclusive results in the literature might be due to the use
of statistical techniques ill-suited to capture the evolution of
the damage distribution. We hypothesize that relevant patterns
may in fact correspond to changes in its right skew and tail. To
investigate this, we use a different modeling and statistical strat-
egy. First, we include control variables for socio-demographic
factors as covariates in our models alongside time—this general-
izes the Actual-to-Potential-Loss approach, allowing for multiple
controls, and improves upon procedures that normalize damage

values prior to modeling (Normalization). Second, and perhaps
most importantly, we characterize the behavior of the dam-
age distribution fitting quantile regressions over disaggregated,
event-level data.

Our approach avoids 2 common pitfalls: 1) linear aggrega-
tion—i.e., summing damages associated to disasters occurring in
a given year over a specified geographical area, which may lead to
a substantial loss of information—and 2) the use of ordinary least
squares (OLS)—i.e., mean regression, which captures only aver-
age trends in damages (changes in expected losses) (17, 18). With
increasing evidence that natural disasters induce fat-tailed dam-
age distributions (19) and that fat tails can dramatically change
policy implications in a variety of climate-economics models (20),
analyzing quantiles can be an effective way to inspect extreme,
low-probability events. In addition, OLS regression can be a
rather blunt instrument to analyze skewed data. In contrast,
quantile regressions do not rely on Gaussianity or even symme-
try assumptions for the error distribution and have already been
used to characterize the evolution of cyclone strength (21–23).

The Devil Is in the Tails: From Climate Stressors to Damages
We hypothesize that what changes over time is the right skew and
tail behavior (as opposed to the average) of the damage distribu-
tion. This can be explained using the concept of damage function.
Damage functions are widely used in the Integrated Assess-
ment Modeling literature to link climate-related stressors (e.g.,
wind speed for tropical cyclones or storm surges) to damages.
Characterizing such functions poses conceptual and econometric
challenges (24–27) which are specific to the economic sectors,
spatio-temporal scales, and feedbacks (e.g., adaptation) under
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Fig. 1. (A) Stylized representation of a convex, upwardly curved transfer
mechanism from stressor to damages. In A, Inset, the horizontal axis shows
the largest damages (upper range of the vertical axis in the main image)
on the log scale. (B) Time-trend estimates from quantile (upward of 80%)
and OLS (mean) regressions for a simulated dataset. The horizontal axis
represents percentiles. The time-trend estimate from OLS is shown as a
constant. Quantile regression estimates are obtained through the modified
Barrodale–Roberts algorithm (38). The mean of a hypothetical Gumbel-
distributed stressor (GEV(µ,σ, ξ) with shape parameter ξ= 0) undergoes
equal yearly shifts for 55 “years” (the time range of the data in Fig. 2). For
each year, we generate i = 1,...1,000 draws and the corresponding damage
values Dai . We then consider the simple model Dai =α+ βti (where ti is the
year of i) and fit quantile and OLS regressions. An alternative visualization
is provided in SI Appendix, Fig. S1.

consideration. However, functions gleaned from global, regional,
and local data are often convex and upwardly curved (26, 28–30),
likely due to nonlinearly increasing exposure or fragility (24).

Based on such a shape, a simple shift in the distribution of the
underlying stressor translates into a rightward skewing and tail
fattening of the damage distribution (larger damages). Fig. 1A
shows a nonlinear, upwardly curved damage function mapping a
hypothetical generalized extreme value (GEV)-distributed stres-
sor into damages. GEV distributions (e.g., ref. 31) are routinely
used to model block maxima for climate stressors linked to the
hazards represented in the data we analyze below (e.g., riverine
floods (32, 33), extreme storm surges driving coastal floods (34),
or tropical cyclone maximum wind speeds (35, 36)). Shifts in the
means of these distributions have been recently linked to climate
change (4, 34, 37). In the illustration presented in Fig. 1A, we
shift the mean of a GEV stressor and use the damage function
to compute the resulting damages over time. A simple rightward
shift in stressor translates into a marked rightward skewing and
tail fattening of damages (Fig. 1 A, Inset). This also illustrates
why mean regression techniques might be a blunt instrument to
detect temporal patterns in damages. Fig. 1B shows the time
trend estimates obtained through OLS (i.e., mean) and quan-
tile regressions fitted to simulated data. The estimates obtained
through quantile regressions increase exponentially along per-
centiles, while the OLS estimate is smaller and poorly represents
the changes occurring in the damage distribution.

Rightward Skewing and Tail Fattening: Economic Impacts
Are Mounting
Turning from simulated to actual data, we find strong evidence
of an accelerating rightward skewing and tail fattening of the
damage distribution over time. We consider economic damages
due to natural disasters from 1960 to 2015 as recorded in the
Emergency Events Database (39), restricting attention to haz-
ards potentially related to climate change (see Data and Code
and SI Appendix, Data Treatment for details). Yearly distribu-
tions of damages from such disasters change markedly over time
(Fig. 2A). In fact, their right tails appear to change in a way quali-
tatively similar to the one we illustrated by simulations (Figs. 1 A,
Inset and 2 A, Inset). Notably, there is almost no temporal trend
in the centers (medians in Fig. 2A) but upper percentiles display
a striking surge.

Building on such descriptive evidence, we estimate a set of
models with various control specifications. In our most general
set-up (Model 1; Regression Models), economic damages depend
on a pure time trend (the main object of interest), gross domestic
product (GDP) in the affected area (commonly used as a proxy
for wealth at risk, given the sparse quality of capital estimates
(17)), additional control covariates (e.g., population size and cli-
mate zone of the affected area), and interaction terms. This
formulation disentangles a pure time trend from one whose mag-
nitude is modulated by the wealth at risk in the affected area (the
interaction term). Indeed, we generalize the Actual-to-Potential-
Loss normalization approach, which de facto corresponds to
modeling damages as affected by GDP and its interaction with

Table 1. Quantile and OLS (mean) regressions for damages, Model 1

Quantile

Variable 80th 90th 95th 99th OLS

Intercept 15.404∗∗∗ (3.586) 31.023∗∗ (15.06) 38.196 (51.671) 220.579 (256.765) 29.974 (61.525)
Trend −0.317∗∗∗ (0.071) 0.936∗ (0.483) 4.795∗∗∗ (1.677) 23.252∗∗ (10.162) 0.885 (1.59)
GDP 0.005 (0.014) 0.093∗∗ (0.042) 0.28∗∗∗ (0.098) 0.747 (0.834) 0.01 (0.024)
Trend×GDP 0.001∗∗∗ (<0.001) 0.001 (0.001) 0 (0.003) 0.011 (0.022) 0.001∗∗∗ (0.001)
Fit quality R1 = 0.06 R1 = 0.111 R1 = 0.155 R1 = 0.267 R2 = 0.028

Results on n = 9,495 disasters occurred between 1960 and 2014 (damages in US$ million). Quantile regression estimates are
obtained through the modified Barrodale–Roberts algorithm (38). Standard errors (between parentheses) are produced with
r = 1,000 bootstrap samples [joint resampling of response and predictor pairs (40)]. Fit quality is indicated by R1 (41) for quantile
regressions and by R2 for OLS. ∗P < 0.10; ∗∗P < 0.05; ∗∗∗P < 0.01 (2-tailed).
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Fig. 2. Empirical distributions of economic damages from natural disasters (A) and estimated time trends from Model 2 (B). (A) Yearly distributions of
economic damages (US$ billion) associated with n = 10,901 disasters occurred worldwide between 1960 and 2015 (see data description in Data and Code).
We show partial boxplots colored by decade. Lower and upper hinges correspond to medians and 90th percentiles, respectively; middle lines to 75th
percentiles; and upper whiskers to 99th percentiles; the top 1% single-event damages amounted to US$482 million in 1970 and to US$9.92 billion in 2010—
an ∼20-fold increase. The red dashed line tracks the time progression of the 99th percentiles (kernel smooth), illustrating the marked increase in damages
due to extreme events. A, Inset zooms into the right tails of the distributions and shows their progressive fattening over time [Gaussian kernel density
estimates on log-transformed damages aggregated by decade, bandwidth fixed with Silverman’s rule (42)]. (B) Quantile and OLS (mean) regressions for the
same data (but in US$ million and restricted to n = 9,495 disasters occurred between 1960 and 2014 after preprocessing; Data and Code). The model used
is 2. The horizontal axis represents percentiles and the vertical one estimated time trends; e.g., at the 99th percentile, we estimate the top 1% single-event
damages to increase by US$26.4 million every year. The time trend estimate from OLS (statistically nonsignificant at 5% level) is shown as a constant, with its
standard 95% CI. Quantile regressions estimates are obtained through the modified Barrodale– Roberts algorithm (38) and a 95% confidence band around
them is produced with r = 1,000 bootstrap samples [joint resampling of response and predictor pairs (40)]. Full results on estimates and standard errors are
given in SI Appendix, Table S2.

time, but not by time per se (the interaction is then interpreted
as the time trend for damages over GDP; Normalization). Table 1
reports the estimates for Model 1 obtained through OLS (mean)
and quantile fits with time, GDP, and their interaction, but no
additional covariates.

The pure time trend is not statistically significant for the OLS,
but it is positive, statistically significant, and approximately expo-
nentially increasing along percentiles for quantile regressions
(e.g., P < 1% at the 95th percentile; see Table 1 for other P val-
ues). The interaction term is not statistically significant for large
percentiles (P > 10%), suggesting that the increasing pattern we
document for extreme damages is not due to increases in wealth
at risk. Also, while fit quality is poor for the bulk of the distribu-
tion (OLS and percentiles up to 80%), it increases considerably
for the upper percentiles.

Given its small effect size and limited statistical significance,
we remove the interaction term and use the more parsimonious
Model 2 (Regression Models) comprising only time and GDP.
As can be seen in Fig. 2B, estimation results are entirely con-
sistent with those of Model 1. In a format analogous to that of
Figs. 1B and 2B shows time trend estimates obtained through
OLS and quantile regressions for percentiles ≥80%. Remark-
ably, observations from 55 years of disasters around the world
reveal patterns that are qualitatively similar to those from our
synthetic experiment with a shifting GEV stressor and a proto-
typical damage function: The change in the mean is small (and
statistically nonsignificant at 5% level), while upper percentiles
have strong, positive, and statistically significant time trends (e.g.,
P < 1% at the 95th percentile; see SI Appendix, Table S2 for
other P values), whose magnitude increases exponentially with
the percentiles. Such results indicate that the economic impacts
of natural disasters are indeed growing, but not at all scales.
The hallmark is a sharp increase in the risk of extreme damages,
which induces a weak and hard-to-detect signal in the mean loss.
This highlights the importance of considering the distribution of

economic damages, not just its mean, and suggests—at a global
scale—poor adaptation capacity to extreme events.

Our findings are robust to a wide range of model specifica-
tions. Modifying the control component in Model 2 (e.g., adding
population or using GDP per capita instead of GDP) produces
similar patterns (SI Appendix, Tables S3 and S4), as does modify-
ing the time span (e.g., fitting our regressions on data from 1960,
1970, or 1980; SI Appendix, Tables S2 and S3).

Next, we refine the analysis considering climate zones. Specif-
ically, after geo-localizing all events in our sample, we estimate
Model 3 (Regression Models), which comprises categorical control
covariates for the Köppen–Geiger climate zones where disasters
occurred (see Data and Code for details; SI Appendix, Table S1
documents a mild association between climate zones and income).
For cold and arid zones, the time trends estimated from quantile
regressions are small and statistically nonsignificant across most
percentiles, possibly due to smaller sample sizes (SI Appendix,
Table S1). However, in line with our results at a global scale, Fig. 3
shows upper percentiles of the damage distributions growing con-
siderably and significantly in temperate and tropical zones (e.g.,
P value at the 95th percentile <1% for the former and <10% for
the latter; see SI Appendix, Table S5 for other P values). Interest-
ingly, the pattern is stronger for temperate than tropical zones,
where disasters are instead more frequent*; even the OLS detects
a statistically significant time trend in temperate zones, while it
still fails to do so in tropical ones (SI Appendix, Table S5). The
stronger patterns may be due to the rising number of extreme
weather events occurring in temperate zones (3), as well as to
effective adaptation in tropical ones.†

*L. Bakkensen, L. Barrage, Climate shocks, cyclones, and economic growth: Bridging the
micro-macro gap (National Bureau of Economic Research, 2018). No. w24893.

†L. Bakkensen, L. Barrage, Climate shocks, cyclones, and economic growth: Bridging the
micro-macro gap (National Bureau of Economic Research, 2018). No. w24893.
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Fig. 3. Quantile regressions for damages (US$ million) associated with
n = 9,495 disasters occurred between 1960 and 2014 in different Köppen–
Geiger climate zones (excluding the polar class). The model used is 3. The hor-
izontal axis represents percentiles and the vertical one estimated time trends:
e.g., at the 99th percentile, we estimate the top 1% single event damages to
increase by US$17.9 million every year in tropical areas and by US$46.5 mil-
lion in temperate ones. Quantile regressions estimates are obtained through
the modified Barrodale–Roberts algorithm (38) and a 95% confidence band
around them is produced with r = 1,000 bootstrap samples [joint resam-
pling of response and predictor pairs (40)]. Time trend estimates for cold
and arid zones are shown with dashed lines and without confidence bands
because they were statistically nonsignificant for most percentiles. Full results
on estimates and standard errors are given in SI Appendix, Table S5.

Notably, the explanatory power of the quantile regressions
used in both Figs. 2B and 3 increases along percentiles (SI
Appendix, Fig. S2), confirming that most of the loss dynamics
occurs in the right tail of the damage distributions.

Beyond Economic Impacts: Lives Lost
Human losses (casualties) are another important impact of nat-
ural disasters. When binned across years, they are also right
skewed, but less so than economic damages, and instead of fat
tails, they present extremely large isolated outliers—for exam-
ple, a 1965 drought in India caused a famine that led to the
death of 1.5 million people (39). Moreover, in contrast to dam-
ages, casualties display a discernible downward trend over time
(Fig. 4A). We investigate this behavior using Model 4, which
comprises time, population (as the key control covariate), and
their interaction. As shown in Fig. 4B, the trend is negative
and statistically significant for the upper percentiles (e.g., P <
1% at the 95th percentile; see SI Appendix, Table S6 for other
P values), with the size of the estimate increasing monotoni-
cally. Results do not qualitatively change when controlling also
for GDP or varying the time span (SI Appendix, Tables S6
and S7).

While this global evidence for decreasing casualties over
time is good news, interesting patterns emerge when break-
ing down the analysis by hazard type and country income
class. For instance, the strongest fall in the 99th percentile
of yearly casualties per inhabitant is observed for droughts
(SI Appendix, Fig. S3), suggesting an increased ability to cope
with this natural hazard. Despite slightly higher frequencies
and strength (43), in recent decades, extreme droughts have
become less fatal (39). So have extreme floods, but only in
rich countries. We observed an increasing polarization between
poor and rich areas of the world also for casualties caused by
storms. Finally, and concerningly, extreme temperature events
have become more deadly in poor and rich countries alike
(SI Appendix, Fig. S3).

Biases in Data May Hide Even Larger Economic Impacts
Our assessment of the trends in economic damages may be overly
conservative due to a number of issues affecting disaster data.
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Fig. 4. Empirical distribution of deaths from natural disasters (A) and estimated time trend from Model 4 (B). (A) Yearly distributions of deaths associated
with n = 10,901 disasters occurred worldwide between 1960 and 2015. We show boxplots colored by decade. Lower and upper hinges correspond to the
25th and 75th percentiles, respectively; middle lines to medians and upper whiskers to 90th percentiles; the top 10% single-event deaths amounted to 585
in 1970 and to 114 in 2010—an ∼5-fold decrease (the top 1% single-event deaths decreased by more than 80-fold from 156,744 to 18,51; not shown in the
graph). The red dashed line tracks the time progression of the 90% percentile (kernel smooth), illustrating the marked decrease in deaths due to extreme
events. A, Inset zooms into the right tails of the distributions and shows their progressive thinning [Gaussian kernel density estimates on log-transformed
deaths aggregated by decade, bandwidth fixed with Silverman’s rule (42)]. (B) Quantile and OLS mean regressions for the same data (but restricted to n =
9,495 disasters between 1960 and 2014 after preprocessing; Data and Code). The model used is 4. The horizontal axis represents percentiles and the vertical
one estimated time trends; e.g., at the 99th percentile, we estimate the top 1% single-event deaths to decrease by 52.1 every year. The time trend estimate
from OLS (statistically nonsignificant) is shown as a constant, with its standard 95% CI. Quantile regression estimates are obtained through the modified
Barrodale–Roberts algorithm (38), and the 95% confidence band around them is produced with r = 1,000 bootstrap samples [joint resampling of response
and predictor pairs (40)]. Full results on estimates and standard errors are given in SI Appendix, Table S6.
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disasters per year in the 1960–2014 span covered by our study) for 55 con-
secutive years. To create the simulated data labeled “Logistic Truncation,”
we pooled damages in the same fashion, but left-truncated them with an
intensity decreasing over time (the percentage of bottom values removed
starts at 50% in the first year, and coverage is increased according to a logis-
tic, reaching 96% in the last year). This mimics a progressive reduction in
underreporting. The horizontal axis represents percentiles and the vertical
one estimates time trends. The model used is Dai =α+ βti (where Dai and
ti are damage and year of disaster i). Quantile regressions estimates are
obtained through the modified Barrodale–Roberts algorithm (38). The 95%
confidence bands are produced through 500 Monte Carlo replications of the
whole procedure.

Difficulties in data collection in the aftermath of disasters impact
statistical analyses (44, 45); events dating back several decades,
especially when less severe, were often entirely unreported or
reported with no damage information (44). Accuracy, however,
has improved (46, 47), with more institutions involved in data
collection and better imputation and validation techniques. An
immediate consequence of the reduction in underreporting over
time, ceteris paribus, is to decrease the upper percentiles of
the damage distributions. Fig. 5 illustrates this with a simple
simulation exercise (details are provided in the legend). Using
stationary data as a reference, the simulation shows how a reduc-
tion in underreporting (which we mimic as a decreasing left
truncation of the data) induces a distinct downward bias in trend
estimation, particularly for upper percentiles. Thus, in reality,
the pattern of rightward skewing and tail fattening of dam-
ages may be more pronounced than the one we assessed using
available data.

Conclusions
We document an increasing trend in extreme damages from nat-
ural disasters, which is consistent with a climate-change signal.
Increases in aggregated or mean damages have been modest,
but evidence for a rightward skewing and tail fattening of the
distributions is statistically significant and robust—with most
pronounced increases in the largest percentiles (e.g., 95% and
99%), i.e., the catastrophic events. This pattern is strongest in
temperate regions, suggesting that the prevalence of devastat-
ing natural disasters has broadened beyond tropical regions and
that adaptation measures in the latter have had some mitigating
effects on damages.

Our results motivate additional efforts to acquire better data
on natural disasters and their economic impacts, increasing accu-
racy and spatial resolution of proxy variables for fast-evolving
factors (e.g., wealth at risk or adaptation measures). Such data
will allow validation and extensions of our analyses.

In contrast to the increase in economic damages, casualties
linked to natural disasters have decreased. This may be due to
lower vulnerabilities, improved early warning systems, and/or
disaster relief. The overall downward trend in mortality is good
news, but we observed a concerning increase in casualties linked
to extreme temperatures.

Our study offers simple, yet relevant, implications. First, pub-
lic disaster risk management and the insurance industry may face
increasingly large economic losses. Second, adaptation efforts
may be critical in temperate (not only tropical) areas. Third,
if part of the increases in the frequency and strength of nat-
ural disasters is attributable to climate change, mitigation is a
logical instrument to reduce trends in damages. From a method-
ological perspective, we find empirical support for the use of a
convex, upwardly curved damage function in integrated climate-
economics models (see also 30) and for the importance of tail
risks (48).

Materials and Methods
Data and Code. We consider monetary damages and casualties for disasters
occurred between 1960 and 2015, as recorded in the Emergency Events
Database (39). This data were provided by the Center for Research on
the Epidemiology of Disasters (Université Catholique de Louvain) under an
agreement of non-third-party disclosure. We restricted attention to 10,901
disasters belonging to the 6 categories most directly associated with climate
change: floods, extreme temperatures, droughts, storms, wildfires, and
landslides. We geolocalized these disasters with Google Maps API, using the
location information originally present in the Emergency Events Database.
Köppen–Geiger climate zones are obtained through spatial matching with
ref. 49 (resolution 5◦ × 5◦) and, in 371 point-to-cell mismatches, with
ref. 50 (resolution 1◦ × 1◦). GDP and population (at the country level)
are obtained from the Penn World Table dataset (51) and income classes
(also at the country level) from the taxonomy by the World Bank. We
express damages in current Purchasing Power Parity (PPP) US$; since GDP
is expressed in current PPP US$, too, this also controls for inflation. We
remove some events during data preprocessing, resulting in a sample size
of 9,495 for our regression analyses. See SI Appendix, Data Treatment for
details. Code for our analyses is available at https://github.com/mcoronese/
extreme-disasters.

Regression Models. Let i be an event occurring at time ti in location `i . Let
Dai and Dei be its damages and deaths, and c(`i) and k(`i) the country and
geolocalization cell where it occurred. Finally, let xi,ti ,`i

be a generic vector
of covariates measured on the event itself, and/or at its time/location. Exam-
ples of (categorical) covariates include event types, cell-level climate zones,
or country-level income classes. For damages, we considered

Dai =α+ βti + γGDPc(`i ),ti
+ δ ti ×GDPc(`i ),ti

+ θxi,ti ,`i
[1]

and eliminating the interaction term

Dai =α+ βti + γGDPc(`i ),ti
+ θxi,ti ,`i

. [2]

In the baseline versions of these models, we use only GDP as control, with
no other covariate. When introducing a categorical covariate as a vector of
dummies hi,ti ,`i

, the model becomes

Dai =α+ βti + γGDPc(`i ),ti
+

∑
j

(αj + βjti)h
(j)
i,ti ,`i

. [3]

For deaths, we considered

Dei =α+ βti + γPOPc(`i ),ti
+ δ ti × POPc(`i ),ti

+ θxti ,`i
. [4]
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In the baseline version of this model, we used only population as control,
again with no other covariates. Categorical covariates were introduced in
the same way as for damage models. For each model, in addition to a stan-
dard OLS (mean) regression, we fit quantile regressions for percentiles from
the 70th to the 99th. Note that covariate sets and spatial resolutions dif-
ferent from the ones we employed can be easily accommodated in these
models and fits. Robustness checks with additional covariates are included
in SI Appendix.

Normalization. Our models have easy-to-interpret parameters, do not
require aggregation over events, and allow us to introduce any type of con-
trols (e.g., the potential effect of population dynamics on total destroyable
wealth, as in refs. 52 and 53). We thus overcame the need for (premodeling)
normalization and generalized the Actual-to-Potential-Loss approach (17),
which normalizes monetary damages by dividing every observation by the
GDP of the area affected by the disaster. This produces a nondimensional
measure of wealth destroyed as a fraction of the maximum potentially
destroyable wealth. Based on the normalized damages Dai*, the effect of
time is then evaluated with a model of the kind

Dai*≡
Dai

GDPc(`i ),ti

= a + bti , [5]

which is a special case of Model 1, since it can be rewritten as

Dai = γGDPc(`i ),ti
+ δ ti ×GDPc(`i ),ti

. [6]

Model 6 has no intercept and no pure time effect, only wealth and its
interaction with time. The more general Model 1 allows us to test whether
wealth and time interact in affecting damages and provides both estimates
and inference for the pure time term.
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